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Abstract: Problems of stabilizing moduli of the type-IIB string theory on toroidal ori-

entifolds T 6/Z2, in presence of worldvolume fluxes on various D-branes, are considered.

For Z2 actions, introducing either O9 or O3 planes, we rule out the possibility of moduli

stabilization in a wide class of models with N = 1 supersymmetry, characterized by the

type of fluxes turned on along D-brane worldvolume. Our results, in particular, imply

that Abelian worldvolume fluxes can not by themselves stabilize closed string moduli, in

a consistent supersymmtric model, for above orientifold compactifications. We also dis-

cuss other Z2 orientifolds of T 6 and show that certain other brane wrappings are also

ruled out by similar consistency requirements. In specific setups we consider examples

with D9-branes wrapping on a complex three-torus with its world-volume fluxes taken

to be semi-homogeneous bundles and D7-branes wrapping holomorphic four-cycles of the

complex three-torus carrying world-volume fluxes.
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1. Introduction

In a world abound with three-form fluxes [1, 2] in the bulk and gauge fluxes [3 – 5] on

D-branes, assuming a copious supply of all kinds of necessary fluxes and branes, many of

the closed-string moduli arising from compactification can be fixed [6 – 13]. Among these

the complex-structure and axion-dilaton moduli of the type-IIB string theory are wont to

be fixed by three-form NS-NS and R-R fluxes, preserving an N = 1 supersymmetry. In

this framework stabilizing the Kähler moduli, the overall volume of the compact target in

particular, turns out to be a bit of a contretemps. The mechanisms envisaged hitherto for

achieving such a lofty goal rely on non-perturbative means of generating superpotentials

through gaugino condensations. On the other hand, fluxes associated with gauge fields on

the brane generate D-term potential and stabilize Kähler moduli. However, it has been

shown recently [14] that to build a consistent model of this type for toroidal orientifolds,

turning on vacuum expectation values (VEV) for the scalars charged under the associated

U(1) symmetry is required in addition. The validity of these results is, however, restricted

to instances of small VEV for the scalars. Only a small patch of the open string moduli

space may thus be explored in this scheme and the method has little to say about the

vast string landscape. With several schemes proposed to stabilize the plethora of moduli

and yet our own world looming heavy upon us, awaiting to be “formulated” by string

theory, amidst “hundred indecisions” and “hundred visions and revisions”, it is important

to narrow down the possibilities by eliminating at least parts of such schemes by their

internal consistency.
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In this context, a standard lore has been that Abelian gauge fluxes on the D-brane

worldvolume can not stabilize closed string moduli, consistent with N = 1 supersymmetry

and tadpole cancellations, in toroidal orientifold compactifications of IIB string theory.

The reason behind such a belief is that fluxes generate new tadpoles which can not be

canceled unless extra orientifold planes are also introduced. However, such O-planes are

possible to introduce only in the case of further orbifoldings, a process which introduces

other complications from the stabilization point of view, such as the presence of twisted

sector moduli. In this article, however, we restrict to the issue of closed string moduli

stabilization in toroidal orientifolds only. In particular, we consider four different IIB

string orientifolds of a six-torus, that is, T 6/Z2, with D-branes carrying magnetic fluxes

on their world-volume wrapped on holomorphic cycles of the six-torus. We denote these

four different orientifolding actions by ZA
2 , ZB

2 , ZC
2 and ZD

2 respectively. The first one is

given by Z2 ≡ Ω ≡ ZA
2 and the construction also corresponds to a type I compactification

on T 6. The second one is Z2 ≡ Ω(−)FLI6 ≡ ZB
2 orientifold, with I6 being the inversion on

six internal coordinates, which has been discussed a lot in the context of closed string flux

compactification [1, 2, 6].

In this paper, we are able to rule out the possibilities of consistent compactifications on

T 6 tori with ZA
2 and ZB

2 orienfoldings, with known holomorphic vector bundles on available

D-branes. Though we consider more general situations, however, our results imply that

Abelian gauge fluxes, in particular, can not be used for moduli stabilizations in the above

contexts, thus confirming the general conjecture in a rigorous fashion.

We also present the basic setup to analyze the possibilities of moduli stabilizations in

consistent toroidal orientifolds of T 6 with the other two orientifolding actions given by:

Z2 ≡ Ω(−)FLI2 ≡ ZC
2 and Z2 ≡ ΩI4 ≡ ZD

2 . Though in these cases, a nogo result is harder

to obtain due to the particular inhomogeneous structure of the tadpole constraints, never-

theless we are able to rule out certain specific flux brane configurations in a supersymmetric

setup.

We consider two nontrivial classes of models. In the first, space-filling magnetized D9-

branes are wrapped on the six-torus itself. In the other space-filling D7-branes wrapped on

different holomorphic four-cycles of the six-torus are considered. In the case of the third

possibility, namely the use of magnetized D5-branes, the relevant arguments are presented

in section 3.3. The fluxes on the world-volume of D-branes are taken to be non-Abelian

(also used earlier in different contexts [15]) in general and we draw our conclusions by

analyzing the consistency conditions in presence of various orientifold planes arising from

different orientifolding actions.

The scope of our approach is limited by the incompleteness of the classification of

vector bundles on tori. In case of D9-branes we consider semi-homogeneous vector bundles

on a complex three-torus and show that such bundles satisfying all the requirements fail

to exist. This, in particular, confirms the suspicion that there is not even an Abelian

configuration which may achieve the cherished goal. In the cases with D7-branes, too, we

show that a gauge theoretic configuration satisfying all the requirements of supersymmetry

as well as tadpole cancellation is an impossibility. The rest of the paper is organized as

following: in section 2 we present the supersymmetry and tadpole constraints for the D9
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brane system with semi-homogeneous vector bundles and analyze those constraints to show

our nogo theorem for ZA
2 and ZB

2 orientifolds, giving rise to O9 and O3 planes respectively.

In section 3, a similar exercise is repeated for the magnetized D7-branes. In this case, the

use of O9- corresponding to ZA
2 orientifolding is trivially ruled out. In addition, we also rule

out O3 and O7 possibilities corresponding to ZC
2 and ZD

2 respectively. In subsetions 3.3,

we also point out that D5 branes can not be used for moduli stabilizations in ZA
2 , ZB

2 and

ZC
2 examples given above. In section 4 we collect all the results, to prove that closed string

moduli can not be consistently stabilized in ZA
2 and ZB

2 orientifold compactification on T 6

by the choice of gauge fluxes used thus far, including close string fluxes.

2. Nine-branes

First, we consider space-filling magnetized D9-branes, that is, D9-branes carrying con-

stant magnetic fluxes on their world-volumes, wrapped on the orientifolded T 6 along with

orientifold three-planes [8, 12, 14].

2.1 Consistency requirements

We shall look upon the T 6 as a complex three-torus or a three-dimensional compact complex

Abelian variety and denote it by X. An N = 1 supersymmetric configuration of N number

of magnetized D9-branes wrapped on X is given by a vector bundle on X, ⊕N
k=1Ek, where

each addendum corresponds to a stack of branes. In the presence of an orientifold plane,

in order for the orientifold plane and all the branes to preserve the same supersymmetry,

the central charge

Z(Ek) =

∫

X

e−iΩ ch(Ek) (2.1)

of the branes must be such that

Im (e−iθZ(Ek)) = 0, Re (e−iθZ(Ek)) < 0 (2.2)

for all k for a certain Kähler 2-form Ω on X. Here ch(E) denotes the Chern character of E

and value of θ depends on the orientifold plane [8]. The D brane tadpoles in this notation,

which corresponds to [13], can be obtained from the Wess-Zumino action, depends on the

choice of the orientifolding. For ZA
2 and ZB

2 respectively the WZ actions read:

Vwz =

N
∑

k=1

∫

Mk

10

[ch1(Ek) ∧ C8 + ch3(Ek) ∧ C4], (2.3)

Vwz =
N

∑

k=1

∫

Mk

10

[ch0(Ek) ∧ C10 + ch2(Ek) ∧ C6], (2.4)

where we write Mk
10 for the world-volume of the D9-brane in the k-th stack. We will discuss

the tadpoles arising for different choices or orientifolding. The tadpoles, along with the

contribution of orientifold plane, when added up over all the stacks should vanish. A valid
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model with moduli stabilized is a solution to the constraints (2.2) and satisfies the tadpole

cancellation condition. Indeed, the existence of a Hermitian two-form Ω as a solution

to (2.2), with a given set of vector bundles on X, consistent with vanishing tadpole, goes

by the name of stabilization of Kähler moduli. We shall consider semi-homogeneous vector

bundles Ek, of ranks rk, respectively, on X.

2.2 Semi-homogeneous bundles

Semi-homogeneous vector bundles on complex tori have been classified. Let X be an n-

dimensional Abelian variety over C and E a vector bundle of rank r over X. Then E is

called semi-homogeneous if dim Ext1(E,E) = n. Semi-homogeneous bundles are Gieseker

semi-stable. The Chern character of E assumes the form [16, 17]

ch(E) = (r, c, c2/2r, · · · cn/n! rn−1). (2.5)

Let us now consider the bundle ⊕kEk on X. Let us denote the rank of the addendum

Ek by rk. Denoting by Hk the Hermitian matrix corresponding to the first Chern class

c1(Ek) of Ek, each of Hk is a 3×3 Hermitian matrix. We shall denote the 3×3 non-singular

Hermitian matrix corresponding to the Kähler form by Ω too.

2.3 The constraints

In this subsection we explicitly lay down the supersymmetry (2.2) and tadpole cancellation

conditions for different orientifold planes using notations introduced in the last subsection.

In order to keep the discussion simple, we only elaborate, wherever possible, on situations

with positive wrapping numbers, defined by the the Jacobian of the matrices mapping the

worlvolume of the brane to embedding space. First we starting by setting the wrapping

matrices to identity for all the stacks. For O5-plane, however we need to introduce negative

wrapping number as well. We emphasize, however, that our analysis is valid for any general

wrapping as we discuss later.

O3-plane. Let us begin with the O3-plane in a type-IIB compactification T 6/ZB
2 , with

ZB
2 defined earlier. It turns out, that in presence of O3-plane either all stacks have θ = 0 or

all stacks have θ = π. For θ = 0 preservation of N = 1 supersymmetry requires, by (2.2),

detΩ −
1

rk

Tr(Ω Adj(Hk)) = 0, (2.6)

Tr(Hk Adj(Ω)) <
1

r2
k

detHk, (2.7)

for each stack indexed by k. For θ = π (2.6) remains the same but the inequality sign

det Ω −
1

rk

Tr(Ω Adj(Hk)) = 0, ∀k (2.8)

Tr(Hk Adj(Ω)) >
1

r2
k

det Hk, ∀k. (2.9)
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For an O3-plane we only need consider the D7-brane and D3-brane tadpoles whose cancel-

lation leads to the equations,

∑

k

Hk = 0, (2.10)

∑

k

1

r2
k

det Hk ≤ 16, (2.11)

respectively. Let us note that since the O3-plane is transeverse to the compact space T 6,

the supersymmetry and tadpole cancellation conditions are invariant under rotations of

the torus.

O7-plane. The supersymmetry conditions in such a compactification, on orientifolds

T 6/ZC
2 , remains the same as that of O3-plane as the allowed values are once again θ = 0

or θ = π. So preservation of supersymmetry requires either (2.6), (2.7) or (2.8), (2.9). The

tadpole condition for O7-plane is different and depends on the choice of the orientifolding

action. Without any loss of generality we choose the orientifolding action acting on complex

coordinates as (z1, z̄1) −→ (−z1,−z̄1) while keeping the rest fixed. In this case, the tadpole

condition becomes

∑

k

H
(11̄)
k ≤ 16,

∑

k

H
(ij̄)
k = 0, (ij̄) 6= (11̄) (2.12)

∑

k

1

r2
k

det Hk = 0. (2.13)

Here the tadpole cancellation conditions are not invariant under rotation along T 6 direc-

tions.

O9-plane. Attempts of stabilizing moduli with stacks of D9-branes in the presence of O9-

planes have been made earlier [8] along with Abelian fluxes. None of the various examples,

however, satisfied all the consistency conditions. Preservation of an N = 1 supersymmetry

of this instance, which corresponds to the orientifolding T 6/ZD
2 , requires θ = −π

2 . That

implies following constraints:

det Ω −
1

rk

Tr(Ω Adj(Hk)) > 0, ∀k (2.14)

Tr(Hk Adj(Ω)) =
1

r2
k

det Hk, ∀k. (2.15)

In the presence of an O9-plane we need to consider the cancellation of D5- and D9-brane

tadpoles, leading to

∑

k

1

r2
k

det Hk = 0, (2.16)

∑

k

rk ≤ 16. (2.17)
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O5-plane. For this case, on orientifold: T 6/ZD
2 , the supersymmetry condition requires

either θ = π
2 or θ = −π

2 . The first condition corresponds to that of the O9-plane, and are

given by (2.14), (2.15). For θ = −π
2 the conditions become:

detΩ −
1

rk

Tr(Ω Adj(Hk)) < 0, ∀k, (2.18)

Tr(Hk Adj(Ω)) =
1

r2
k

det Hk, ∀k. (2.19)

The tadpole condition for O5-plane, like O7-plane depends on the choice of the orientifold-

ing action. This time we choose the orientifolding action acting on complex coordinates as

(z2, z3, z̄2, z̄3) −→ (−z2,−z3,−z̄2,−z̄3) while keeping the rest fixed. The tadpole condition

becomes

∑

k

nk rk = 0, (2.20)

∑

k

nk Adj(Hk)
(11̄) ≤ 16,

∑

k

nk Adj(Hk)
(ij̄) = 0, ∀(ij̄) 6= (11̄). (2.21)

In this case we have to allow the overall wrapping number nk so that it can take both

positive and negative values. Once again, the tadpole cancellation conditions are not

invariant under rotation along T 6.

In the next subsection we present a general analysis of the supersymmetry and tadpole

cancellation conditions for the cases of O3 and O9-planes and discuss the cases of O5 and

O7-planes briefly.

2.4 Analysis of constraints

In this subsection we will analyze the mutual consistency of the constraints for two cases,

namely: O3 and O9. That takes care of all the Z2 orientifolding actions with fixed 3-planes

and 9-planes. The other orientifolding actions, for which one has fixed 5-plane or 7-plane

the tadpole cancellation conditions do not have homogeneous forms and are not invariant

under rotation among the directions of T 6. So these cases do not admit a general analysis

and require a case by case discussion. Nevertheless, as emphasized earlier, our results in

this section as well as in the later ones, are sufficient to prove that there is no consistent

toroidal orientifold of T 6 with either O3 or O9 planes, within the class of worldvolume

fluxes that are being considered.

We begin with (2.6)–(2.11) and (2.14)–(2.17) for a set of Hermitian matrices Ω, Hk,

k = 1, . . . , N for an arbitrary fixed positive integer, N . We are, therefore, considering N

stacks of D-branes on the three-torus, each stack k corresponding to a semi-homogeneous

vector bundle Ek of rank rk, with first Chern class given by the Hermitian matrix Hk.

Clearly, for every k, the rank rk of the bundle Ek is a non-zero positive integer. First, let

us consider the case in which all the matrices Hk are non-singular. In this cases it turns

out to be convenient to define a new non-singular matrix Gk = HkΩ
−1 and use the relation

Adj(M) = (det M)M−1 for a non-singular matrix M . In this notation the constraints

arising from supersymmetry and tadpole cancellations are as follows.

– 6 –
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O3-plane. To begin with we consider θ = 0. We rewrite the relations (2.6), (2.7)

and (2.10) respectively as

rk = Tr(G−1
k ) detGk, (2.22)

Tr(Gk) <
1

r2
k

det Gk, (2.23)

∑

k

Gk = 0, (2.24)

where we have used the strict positivity of rk and detΩ.

Since the first two equations involve only traces and determinants of Gk, we can rewrite

them in terms of the eigenvalues of the matrices. Denoting the eigenvalues of the 3 × 3

matrix Gk as xk, yk, zk, we rewrite equations (2.22) and (2.23) as, respectively,

rk = xkyk + ykzk + zkxk, (2.25)

r2
k(xk + yk + zk) < xkykzk. (2.26)

Four possibilities arise for the combination of signs of the eigenvalues xk, yk, zk. Let us now

discuss them in turn.

1. All the eigenvalues are positive. In this case, (2.25) and (2.26) together imply

rk(xkyk + ykzk + zkxk)(xk + yk + zk) < xkykzk,

as rk = xkyk + ykzk + zkxk > 0. Using the inequality,

(xkyk + ykzk + zkxk)(xk + yk + zk) − 9xkykzk

= xk(yk − zk)
2 + yk(zk − xk)

2 + zk(xk − yk)
2

> 0,

for non-vanishing positive numbers, we thus require

rk < 1/9.

Since rk is a non-zero positive integer, this is not possible.

2. Two of the eigenvalues are positive and one negative. Let us consider a particular

value of k and, without loss of generality, let us take xk = a, yk = b and zk = −c,

rk = r, with a, b, c positive and r > 0. Then, by (2.25) we have r = ab− bc− ca > 0,

or

c <
ab

a + b
,

while by (2.25) and (2.26), again, we have

(a + b − c)(ab − bc − ca) < −abc/r.

Thus, a + b < c. Hence, a + b < c < ab
a+b

, which implies

(a + b)2 < ab,

an impossibility, since a, b and c are non-zero positive numbers. Since this is true for

an arbitrary k, we conclude that even this case is disallowed.

– 7 –
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3. One of the eigenvalues is positive and two negative. Again, let us fix an arbitrary k

and without loss of generality assume that xk = a, yk = −b and zk = −c, with a, b,

c strictly positive and rk = r ≥ 1. Now, by (2.25), we have bc − ab − ca = r > 0,

implying
a

b
+

a

c
< 1,

while (2.25) and (2.26) together imply

(a − b − c)(bc − ab − ca) < abc/r.

Dividing both sides by abc and rearranging the terms, we have

a

b
+

a

c
+

b + c

a
> 5 −

1

r
,

where we used the inequality b/c + c/b ≥ 2 for any pair of positive definite numbers.

Thus,

1 +
b + c

a
> 5 −

1

r
,

leading to

a <
b + c

4 − 1/r
,

implying a − b − c < 0. Since this is true for all k and rk ≥ 1, we conclude that

xk + yk + zk = a − b − c < 0 for every k.

4. All the eigenvalues are negative. In this case, obviously, xk + yk + zk < 0.

Thus, the eigenvalues of Gk are either of the type in 3 or 4 if Gk are non-singular, with the

sum of eigenvalues, that is the trace, negative in both cases.

Finally, if Hk is singular for some k, then while we can not use (2.22), the inequal-

ity (2.23) can still be used, as it does not involve an inverse of Hk. From (2.23), then,

Tr(Gk) < detGk = 0. We thus conclude that the trace of the matrix Gk is negative

definite for any k, whether Gk is singular or not. This is in contradiction with the equation

∑

k

Tr(Gk) = 0. (2.27)

obtained by taking trace on both sides of (2.24).

For θ = π one can do the same analysis and obtain that the trace of the matrix

Gk is positive definite and so once again does not satisfy (2.27). Both the values of θ

are not allowed simaltaneously as the supersymmetries preserved by them are mutually

incompatible.

In the above analysis, we can incorporate “wrapping numbers” [11]. The wrapping

numbers are Jacobians of the embedding of the six coordinates of the world volume of the

D9-brane onto X, which may be any non-zero positive or negative integer. Inclusion of

these factors is tantamount to multiplying both sides of the inequality (2.7) by the sign

corresponding to the wrapping number of the k-th stack for each k. The expressions of

– 8 –
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tadpoles will also be multiplied with the wrapping number of the k-th stack. When the

wrapping number is positive, that the above argument goes through is obvious. For a

negative wrapping number, the inequality will change sign but so does its contribution

to tadpole and thus the above analysis remains valid. So in both cases we find that the

conclusion drawn above remains unaltered.

O9-plane. Now we consider the orientifolding action with fixed 9-plane, which simply

means the Z2 consists of parity inverson only and is not combined with any space-time

orbifold action like the other cases. We rewrite the relations (2.14), (2.15), (2.16) and (2.17)

respectively as

rk > Tr(G−1
k ) detGk, (2.28)

Tr(Gk) =
1

r2
k

det Gk, (2.29)

∑

k

rk ≤ 16, (2.30)

∑

k

(G−1
k ) detGk = 0. (2.31)

where we have used the strict positivity of rk and detΩ. Moreover the form of the D9

tadpole contribution (2.30) requires that we restrict to positive wrappings only.

Once again we rewrite equations (2.28) and (2.29) as, respectively,

rk > xkyk + ykzk + zkxk, (2.32)

r2
k(xk + yk + zk) = xkykzk, (2.33)

∑

k

(xkyk + ykzk + zkxk) = 0, (2.34)

and consider the various possibilities. Note that all the three relations remain unaltered if

we flip the signs of all the eigenvalues simaltaneously. Therefore it is sufficient to consider

two cases. The other possibilities can be obtained by flipping the signs of eigenvalues.

1. All the eigenvalues are positive. Let us choose xk = a, yk = b, zk = c for a particular

stack with (a, b, c) positive. (2.32) and (2.33) implies

1

r2
k

=
a + b + c

abc
, (2.35)

rk > (ab + bc + ca). (2.36)

The above two relations imply

1

rk

>
(a + b + c)(ab + bc + ca)

abc
> 9,

where the second inequality follows from an argument similar to the one already dis-

cussed in the case of O3-plane. Since rk is a non-zero positive integer it cannot be less

than 1/9 and so this configuration cannot satisfy the supersymmetry requirements.

This also rules out the case where all eigenvalues are negative.

– 9 –
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2. Two of the eigenvalues are positive and one negative. Let us choose xk = a, yk =

b, zk = −c for a particular stack with (a, b, c) positive. (2.32) and (2.33) imply

rk > ab − c(a + b), a + b − c = −
abc

r2
k

.

But then we have

c − (a + b) =
abc

r2
k

> 0,

which implies c > (a + b). So this configuration can be compatible with the super-

symmetry equations. Now we consider the condition (2.34) which arises from tadpole

condition. Since c > (a + b) each summand corresponds to k-th stack in (2.34) is of

the form

ab − c(a + b) < ab − (a + b)2 < 0.

Since all of them are negative they cannot add up to zero. Thus this configuration is

not compatible with the tadpole cancellation condition. This also rule out the case

where two of the eigenvalues are negative as that can be obtained by flipping the

signs of the eigenvalues which does not change the sign of tadpole.

The conclusion of the analysis above is, therefore, that the stabilization of Kähler

moduli is impossible to achieve by wrapping magnetized D9-branes corresponding to semi-

homogeneous vector bundles on the complex three-torus, for O9 and O3 orientifold planes.

A similar general analysis for O5 and O7 orientifold planes turns out to be difficult because

the D7 and D5 tadpoles as given in eqs. (2.13) and (2.21), are not invariant under rotations

along T 6 and therefore can not be analyzed in terms of the eigenvalues such as xk, yk, zk

of the matrices involving gauge fluxes. Note, however, that in our analysis we have not

assumed any restriction on the ranks or equality of the ranks of the bundles. Therefore, our

conclusions are valid for bundles of any rank. This, in particular, rules out stabilization with

Abelian fluxes, as has been suspected earlier [11]. It has however been shown earlier [13]

that it may be possible to stabilize all moduli, complex and Kähler, by considering two-

bundles and line bundles in conjunction. While the existence of these bundles has not been

rigorously established, these principal bundles of rank two or higher seem to be the only

possibilities for these schemes with O3 or O9-planes to be successful. We now proceed to

discuss the magnetized D7 brane systems, in order to prove the incompatibility of T 6/ZA
2

and T 6/ZB
2 compactifications with moduli stabilization conditions in a supersymmetric

theory.

3. Seven-branes

An alternative mechanism of stabilizing the Kähler and complex structure moduli in a

supersymmetric vacuum may be thought of, in which space-filling D7-branes instead of D9-

branes are wrapped on holomorphic four-cycles of the complex three-dimensional compact
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manifold. Such a scheme has been proposed with a real six-torus as the compactification

manifold [14], albeit in conjunction with non-zero VEV of charged scalars. However, as

mentioned above, the different kinds of RR charges of the configuration must add up to

zero, for cancellation of tadpoles of all kinds. In this section we demonstrate that even with

space-filling D7-branes wrapped on holomorphic four-cycles in the presence of O7 or O3-

planes, D7-tadpole cancellation and preservation of supersymmetry are mutually exclusive.

Therefore, a supersymmetric ground state is impossible to realize even within this scheme.

For completeness, We consider the constraints arising for O5 planes as well, while O9 case

is trivially ruled out. O5 tadpole cancellation conditions are similar in structure as the

O7 and O5 examples of section- 2.2 and their discussions remain inconclusive for similar

reasons. We now write down the consistency conditions and present the analyses.

3.1 The constraints

Let us consider orientifolded type-II string theory on the complex three tori X with a trans-

verse Op-plane and space-filling magnetic D7-branes wrapped on holomorphic four-cycles,

Σ of X [4], holomorphicity being required by the preservation of N = 1 supersymmetry.

The Kähler form on X is denoted by Ω, as before. The world-volume theory of the D7-

brane is a gauge theory and a generic configuration corresponds to a vector bundle E on

the world-volume. The supersymmetry condition for such a configuration is given by a

non-linear generalization of hermitian Yang-Mills equation [18, 4]:

Fı̄ dzı ∧ dz̄̄ = 0 , ω ∧ F = k

(

vol(Σ) −
1

2
F ∧ F

)

, (3.1)

where F denotes the curvature associated with the bundle E and ω denotes the Kähler

form on the four-cycle Σ induced from Ω.

In the presence of Op-plane, the supersymmetry imposes one more condition. That the

D-brane configuration preserves the same supersymmetry as that of the Op-plane requires

the central charge

Z =

∫

Σ

e−iω ch(E), (3.2)

to satisfy the supersymmetry condition (2.2) where θ depends on the dimension of the ori-

entifold plane. We enlist the supersymmetry conditions and tadpole cancellation conditions

for different Op-planes in the following.

O3-plane. In presence of O3-plane transverse to the compactification manifold T 6, the

allowed values are either θ = 0 or θ = π. For θ = 0 D7-brane configuration needs to satisfy

the following constraints:

ω · F = 0 , (3.3)
∫

Σ

[

1

2
ω · ω − ch2(E)

]

< 0. (3.4)
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The first equation (3.3) implies that in presence of O3-plane the value of k = 0 in (3.1).

For θ = π the preservation of supersymmetry requires,

ω · F = 0 , (3.5)
∫

Σ

[

1

2
ω · ω − ch2(E)

]

> 0. (3.6)

In addition we need to impose the vanishing tadpole condition. The vanishing of D7-brane

tadpole contribution requires the following integral summed over all stacks,

∑

stacks

∫

dvol(Σ)rk(E) = 0, (3.7)

evaluated on any four-cycle should vanish. We have used rk(E) for the rank of bundle E,

vol(Σ) for the volume-form of four cycle Σ. In other words if we have D7-brane wrapped

on some four-cycle Σ whose volume takes a positive value to cancel this tadpole we need

to have another D-brane wrapped on some Σ′ whose volume takes negative value. This is

equivalent to introducing wrapping numbers nk for k-th stack which takes both positive

and negative values. We write down the condition in terms of wrapping numbers as
∑

k

nk rk(Ek) = 0, (3.8)

where k denotes the stack and nk wrapping number for k-th stack. Similarly the D3-brane

tadpole contribution is
∑

k

nk ch2(Ek) ≤ 16. (3.9)

O7-plane. In presence of O7-plane the only allowed value is θ = π and so the super-

symmetry requires (3.5) and (3.6) have to be satisfied. The tadpole cancellation condition

depends on the wrapping of D7-brane with respect to the O7-plane. We will consider the

case where D7-brane and O7-plane are on top of each other. That is the only configuration

where one can cancel the D7-tadpole arising from O7-plane using D7-brane only. In that

case, the vanishing condition for D7 and D3 tadpole are
∑

k

rk(Ek) ≤ 16, (3.10)

∑

k

ch2(Ek) = 0, (3.11)

respectively.

O5-plane. In these case, allowed values of θ are either θ = π
2 or θ = −π

2 . For θ = π
2 the

supersymmetry condition (2.2) becomes

ω · F > 0, (3.12)
∫

Σ

[

1

2
ω · ω − ch2(E)

]

= 0. (3.13)
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For θ = −π
2 the conditions become

ω · F < 0, (3.14)
∫

Σ

[

1

2
ω · ω − ch2(E)

]

= 0. (3.15)

The tadpole cancellation condition depends on the orientifolding action. For sim-

plicity we assume that the D7-brane is wrapped on the T 4 spanned by the complex

coordinates {z1, z2, z̄1, z̄2}. The orientifolding action is given by (z2, z3, z̄2, z̄3) −→

(−z2,−z3,−z̄2,−z̄3) so that the O5-plane is wrapped on the T 2 spanned by the coor-

dinates {z1, z̄1}. Then the D5-brane tadpole cancellation condition becomes

∑

k

ch1(Ek)
11̄ ≤ 16,

∑

k

ch1(Ek)
ı̄ = 0 ∀(ı̄) 6= (11̄). (3.16)

Since the D7 brane does not generate any D9-brane charge the corresponding tadpole

contribution is zero. The tadpole condition in the case of O5-plane is not invariant under a

rotation along T 6 and therefore does not admit a general analysis. In what follows we will

restrict ourselves to the general analysis for O3 and O7 orientifold planes. In this scheme

we leave out the O9-plane because this generates D9-brane tadpole. Clearly, one cannot

cancel D9-brane tadpole using D7-branes only.

Collecting all the conditions imposed by supersymmetry in presence of O3 and O7-

plane we get:

Fı̄ dzı ∧ dz̄̄ = 0, (3.17)

ω ∧ F = 0. (3.18)

These two equations are the usual instanton equations and are common to both the O3

and O7 cases. (3.17) implies the bundle E is holomorphic. In order to ensure that there

is a solution of (3.18) one needs to show that the bundle is stable. We will not get into

the details of stability criteria. However, in the following, we will use one of the necessary

conditions for the stability of the bundle which says the discriminant of the bundle should

be positive semi-definite. In addition the supersymmetry requires either (3.4) or (3.6) has

to be satisfied for O3 and (3.6) has to be satisfied for O7 orientifold planes. Moreover,

one needs to cancel the tadpoles as well. In the next subsection we will analyze all these

constraints.

3.2 Analysis of constraints

O3-plane. We begin with θ = 0. Let the closed (1, 1)-forms CI , I = 1, 2, · · · , h(11) be

an integer basis for H(1,1)(Σ,Z) and IIJ =
∫

Σ

CI ∧ CJ be the corresponding intersection

matrix. Then in cohomology we can expand

F = F ICI , ω = ωICI . (3.19)
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In this notation (3.18) and (3.4) become

(ω · F ) = 0, (1/2)(ω2 − c2
1) + c2 < 0, (3.20)

where we use the following notation to keep the expressions concise. We write IIJ as the

metric, ω · F = ωIIIJF J , ω2 = ωIIIJωJ , c2
1 = c1(E)IIIJc1(E)J and c2 =

∫

Σ

C2(E). For

convenience we can make IIJ diagonal with positive and negative entries. However, for a

general four-manifold Σ the number of positive entries p in IIJ can be either 0 or 1 [19]

depending on whether b1 of Σ is even or odd respectively.

We consider the two cases separately. If p = 0 the metric IIJ has signature

(−,−, · · · ,−). So there is no Σ with ω2 > 0 on which D7-brane can be wrapped.

When p = 1 the metric IIJ has signature (+,−, · · · ,−). For the Abelian case, i.e.

when rank of E is 1 (3.18) reduces to

ω · c1 = 0, ω2 − c2
1 < 0. (3.21)

If ω is spacelike ( ω2 > 0) the first equation implies c1 is timelike but that in turn means

c2
1 < 0 and so the second inequality cannot be satisfied.

When rank of E is grater than 1 (3.20) reduces to

ω · F = 0, (1/2)(ω2 − c2
1) + c2 < 0. (3.22)

For our purpose, we can take the trace of first equation of (3.22) and write ω · c1 = 0. But

a necessary condition [20] that the vector bundle E of rank r is stable is the discriminant

of E, which is given by

△ =
1

2r2
(2rc2 − (r − 1)c2

1), (3.23)

is positive semi-definite. Eliminating c2 from (3.22) and (3.23) we get

rω2 − c2
1 + 2r2△ < 0. (3.24)

Once again if ω is spacelike we have c1 to be timelike and so this inequality cannot be

satisfied for a positive semi-definite △.

Thus we see for both the choices of p, supersymmetry requires volume of Σ is negative.

On the other hand for tadpole cancellation (3.7) we need to introduce stacks where volume

of Σ takes positive values as well. So tadpole cancellation cannot be compatible with

supersymmetry of O3-plane (and other stacks).

For θ = π the analysis is similar except one would get only positive volume of Σ and

therefore it is not possible to satisfy (3.7).

O7-plane. For O7-plane we consider equations (3.18) and (3.6) which, in this notation,

become

(ω · F ) = 0, (1/2)(ω2 − c2
1) + c2 > 0. (3.25)
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In this case, ω2 has to be positive and so once again the first equation implies (1/2)(c2
1−c2)

is negative. This time it is compatible with (3.6). However, the contribution to D3-brane

tadpole charge (3.11) is also (1/2)(c2
1 − c2). Since for all the stacks this contribution is

negative that cannot add up to zero. Therefore this configuration cannot satisfy both

supersymmetry and vanishing of tadpole condition simultaneously.

3.3 D5 branes

D5 branes are irrelevant, as far as the cancellations of tadpoles generated by O9 and O7

planes, appearing in ZA
2 and ZC

2 orientifoldings are concerned. In addition, it is known

that an O3 plane tadpole contribution can not be canceled by a magntized D5 in a super-

symmetric way, thus ruling out their use in ZB
2 compactification as well. This leaves the

last possibility, namely the possible concelation of the D5 tadpoles generated by D9 and

D7 banes in T 6/ZD
2 orientifold. However, as already stated earlier, a complete study of ZC

2

and ZD
2 orientifold of T 6 is left as a future exercise.

4. Conclusions

We conclude that in the schemes outlined above, in terms of worldvolume fluxes, there is

no supersymmetric ground state for a type I string compactification on T 6 as well as IIB

orientifold compactifications on T 6/Ω(−)FLI6, when magntized branes are used for gener-

ating D-term potentials for closed string moduli. The result remains valid in the case of

known closed string fluxes relevant in the case of IIB on T 6/Ω(−)FLI6. Indeed, these fluxes

contribute to only D3 tadpoles with the same sign as ordinary D3 branes and therefore

are not relevant for the cancellations of unwanted tadpoles in the compactification using

D9, D7 or D5 branes. Other orientifold compactifications: T 6/Ω(−)FLI2 and T 6/Ω(−)I4,

as we already mentioned earlier, do not admit a similar general analysis and so one has to

check them individually depending on how the O-planes are positioned. However, we have

checked numerically for various possibilities and it turns out that it is unlikely to have a

consistent solution to these systems. A general proof for these compactifications will be

useful and will be examined as a future exercise. This suggests that we better look for

supersymmetric ground state in orbifolded orientifolds. One promising approach may be

to consider orientifolds where the space-time orbifold part consists of shift symmetry, which

reduce the number of twisted sector closed string moduli, or in particular completely elim-

inate them. One can then examine whether it is possible to build a realistic grand unified

model with completely stabilized moduli [21], using flux branes alone. This will provide

an exact CFT construction for moduli stabilization in a realistic setup and will therefore

be of great importance. We hope to return to some of these issues in future.
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